If it's not what You are looking for type in the equation solver your own equation and let us solve it.
34y^2+8y-119=0
a = 34; b = 8; c = -119;
Δ = b2-4ac
Δ = 82-4·34·(-119)
Δ = 16248
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{16248}=\sqrt{4*4062}=\sqrt{4}*\sqrt{4062}=2\sqrt{4062}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-2\sqrt{4062}}{2*34}=\frac{-8-2\sqrt{4062}}{68} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+2\sqrt{4062}}{2*34}=\frac{-8+2\sqrt{4062}}{68} $
| (1/5x)-12=-3 | | 7x-9-2x=-39 | | 7x+2=3x44 | | 6/5w−12/7=−4/3w−6/13 | | -3w+9=-5w-1 | | c(0)=14 | | 3(4x−5)+4x−7= | | -4.7*g=-28.2 | | 3w-30=2w | | (5x-4)+(7x-15)+(6x+1)=180 | | (7n+63)=-63 | | -2-2y=-6y | | 125m-75m+38,600=40,600-150m | | 4(x-1)÷8=2(x+1)÷6 | | c(0)=4 | | 3/2(7/3m-1=2 | | 6+3p=2p-1 | | 7x-10=-2(x-4)+9 | | c/5+12=12 | | (5x-4)+(7x-15)+6x+1)=180 | | 9+5v=8v | | 3(v+4)+4(-2-v)=16 | | -2m/8+m+1=0 | | 3v+-3v+-6=-3 | | 3x=2=-x=7 | | 80-u=167 | | -1(t+8)=t | | 2/3b+8=16 | | 4=2b=5+5(b=4) | | 6/7*d=-3/7 | | 0.02+x/100=3x/100 | | -4-8y=-12y+4 |